

GDTECH engineering

ROAD RESTRAINT SYSTEMS, POLES, ANTI-INTRUSION, **INDUSTRIAL SAFETY PROTECTION & TRAFFIC SIMULATIONS**

ISO 9001

Qualité

EN/AS/JISO 9100

Aéronautique

EDER - FSE

GENERAL PRESENTATION

LOCATIONS Liège R Valenciennes Calgary **Bordes SOFTWARE & HARDWARE** Cluster #1 Altair HyperWorks 128 Cores 256 GB Ram Intel Xeon E5-2670 @2,60Hz LS-DYNA Cluster #2 Cluster #4 128 Cores 512 Cores 512 GB Ram Cluster #3 4018 GB Ram Intel Xeon E5-2640 @2,60Hz 160 Cores Amd Epyc 2019 **Solid**Works 768 GB Ram Intel Xeon Silver 4114 @2.20Hz **REPRESENTATIVE COMPANY** Turkey, Iran, Israel, Georgia, Uzbekistan, Turkmenistan Australia & New Zealand

GENERAL PRESENTATION

ROAD RESTRAINT SYSTEMS

engineering

GDTECH

POLES AND PANELS

INDUSTRIAL PROTECTION AND CIRCUIT

Concerned standards: EN1317, NCHRP350, MASH,

OTHERS

VEHICLES ACCORDING TO INTERNATIONAL STANDARDS

GDTECH

engineering

ADVANCED MODELS AND LAB TESTS

GDTECH

engineering

DETAILED REPORTS

Simulation reports

3D Viewer of animated results

Von Mises Stress - Plastic Strain - Displacement ...

GDTech is an independent company of 180 people with a core business being Finite Element Analyses of structures in the Aeronautic and Crash applications. Concerning roadside safety equipment analyses, GDTech has an experience of more than 10 years and has collaborated with many customers worldwide using EN1317, NCHRP350 / MASH, PAS68, ASTM standards mainly. GDTech has delegates representing Belgium in TC226/WG1 and TC226/WG10 writing EN1317 and EN12767 respectively. GDTech is participating at the elaboration of the reference European document about how to simulate correctly EN1317 crashes of vehicles against road restraint systems (TG5-CME). GDTech actively participates at TRB concerning US standards. GDTech is member of ERF (European Road Federation) and Smart Transportation Alliance (STA).

Arrer an accident

1. New Product Development

1. New Product Development

1. New PRODUCT DEVELOPMENT

Brochure GDTech - www.gdtech.eu This document is the property of Group GDTech It can not be communicated to third parties or reproduced without written authorization (law of March 11, 1957)

Truck Mounted Attenuator

1. NEW PRODUCT DEVELOPMENT

Dummies

2. CERTIFICATION

Category	Change
A	Slight
В	Moderate
С	Significant

GDTECH

engineering

Category B allows simulation to be used for certifying modified products or families of products

Modifications to one or more components where their effects on the performance of the VRS can be determined by static or dynamic analysis or other appropriate means.

What you have :	What you want :	What you need :
 A product that passed the necessary crash- tests A simulation reproducing the successful crash-tests 	 adapting your product Extend you family of products [without having to perform new crash tests] 	 A simulation of the modified product using proven models according to EU best- practices

Measure	Crash-Test	Virtual-Test	Acceptance	Difference
Normalized dynamic deflection [m]	0.8	0.76	<0.18	0.04
Normalized working width [m]	0.9	0.86	<0.18	0.04

Original model Tested -Profile A Modified model - Profile B

Example 3: Bolt orientation changed

GDTECH

engineering

Example 4: Different concrete basement heights

2. CERTIFICATION

DTECH

engineering

Simulation for assessing performance of a tested product according to a different international standard (EN1317, NCHRP 350, MASH, GOST, ...)

3. ADAPTATION TO SITE CONDITIONS

GDTECH

engineering

3. ADAPTATION TO SITE CONDITIONS

GDTECH

engineering

ENIS	17/301
Profil	HEB120-S335JR
А	1,00m
В	1,00m
Х	0,20m
Classes	Forces
hard	F > 35 kN
medium	$20 < F \le 35 \text{ kN}$
soft	$F \le 20 \text{ kN}$

14047

PTV869 / Soil

HEB100-S235JR		
0,65m		
1,00m		
0,35m		
Forces		
$16 < F \le 25 \text{ kN}$		
$10 < F \le 16 \text{ kN}$		

3. ADAPTATION TO SITE CONDITIONS

Transition between systems

GDTECH

engineering

3. ADAPTATION TO SITE CONDITIONS

Vehicle mass/shape increased/modified

Tank trailer

GDTECH engineering

ROAD RESTRAINT SYSTEMS

3. ADAPTATION TO SITE CONDITIONS Curves Risks × . Impact on bridge pile Steps THINKING Tree protection Wiring Anti Dazzle Possibility to investigate & solve many roadside real problems.

Brochure GDTech - www.gdtech.eu This document is the property of Group GDTech It can not be communicated to third parties or reproduced without written authorization (law of March 11, 1957) afao afao 21 Usualité Aronautique 21 GDTECH engineering

3. ADAPTATION TO SITE CONDITIONS

Passive safe posts inside the W:

Speed to get W1 when only N2 W2 are available:

3. ADAPTATION TO SITE CONDITIONS

Motorcyclist protection test & influence for vehicles

A		ENT RECONSTRUCTION		_
	Activ	ities	GDTech	
	A-	On-site measurements and photographs, 3D scan of vehicle deformations / obstacles	×/√	
	В-	Analysis based on analytical calculation (energy balance,) and the experiment	×	
	C-	Quick « Accidenta Report » compare to more 6000 real crash-test	1	
	D1-	 Read and interpret the "black boxes of the vehicle" to confirm (or not) the conclusion of B and obtain input data for E and F; 		
	D2-	CDR case sales and training for its use	1	
	E-	PC-crash simulation to rebuild the accident	1	
	F-	LS-Dyna simulation to analyze cases that are more difficult to solve (involving road equipment, etc.)	1	
	G-	Realistic visualization of accident situations	1	
	H-	Execute a real crash reproducing the conditions of the accident	1	

Standard & Tailored test

GDTECH engineering

4.

4. ACCIDENT RECONSTRUCTION

GDTECH

engineering

5. TRAINING SESSIONS Customized program in collaboration with local players Workshop on Vehicle Restraint Systems (VRS) 1,5 day International Standards and focus on European ones and updates From perspective to performance standards: national examples Performance standard for safer and more economical products: - Longitudinal barriers - Crashworthy terminals - Crash cushions - Motorcyclists and VRS - Energy absorbing poles Answers to specific situations: - Safety barriers in curves - Transitions - Soil influence & cliffs - Bridge safety barriers - Special zones protections National regulations on uncovered requirements by EN 1317 Regulations on installation & repair: national examples Workshop on local problematics on VRS **1**0,5 day E To be discussed Workshop on Work Zones Safety **7** 0,5 day C Regulations on lateral protection: national examples Truck mounted attenuators & truck lateral protection Traffic management for work zones Workshop on Traffic Management & Accidents 0,5 day Traffic management Accident reconstructions

BRIDGE BARRIER UPGRADING

New EN1317

Mandatory to use CE crash-tested barriers on bridges

How to Collaborate?

- > Upgrade your current barriers to fit with EN1317
- Choose one existing and already tested safety barriers and develop an effective anchoring solution

LIGHT POLES, SIGN POLES & PANELS

SIMULATION FOR CERTIFICATION OF FAMILIES OF PRODUCT

POLES [LIGHTING & SIGNS]

WIND CALCULATION OF POLES & PANELS

Analytic model

Fast & simple but could be far from reality

 Classe de vent
 Terrain de classe 0 (côte)**
 Terrain de classe 2 (intérieur du pays)***

 Hauteur* ≤ 3.5 m
 WL4

 Hauteur* ≤ 4.5 m
 WL3

 Hauteur* > 3.5 m
 WL5

 Hauteur* > 4.5 m
 WL4

 (*) Hauteur du centre de gravité géométrique de l'ensemble des surfaces des panneaux

 (**) selon ce critère, il est entendu par classe 0 : la zone côtière jusqu'à 2 km à l'intérieur des terres et 2 km depuis le bord de l'Escaut autour d'Anvers (depuis Kallo jusqu'à la frontière néerlandaise).

 (***) Les documents contractuels définissent à quelle classe de terrain il faut faire référence.

Tableau 6 : exigences pour la charge du vent

Movement

Von Mises stress

Numerical model

Could be more accurate

SECURITY PRODUCTS

GDTECH

engineering

SECURITY PRODUCTS

SECURITY PRODUCTS

TAILORED INDUSTRIAL PROTECTIONS

LOW DEFORMATION & MAINTENANCE

TAILORED INDUSTRIAL PROTECTIONS

INDUSTRIAL SITES

SERVICE STATION & PARKING

WALKWAY PROTECTIONS

TAILORED INDUSTRIAL PROTECTIONS

PROTECTION FOR FALLING

ANALYZE OF THE TRAJECTORIES, MASSES & SPEEDS

DESIGN OF APPROPRIATE PROTECTION FOR CARS & MOTORCYCLISTS

EAD340059

PFC3D Rigid Blocks (rock fall)

> FLAC3D Structural Elements (barrier)

Adaptation to site condition

FALLING ROCK PROTECTIONS

FALLING ROCK PROTECTIONS

3. ADAPTATION TO SITE CONDITION

VEHICLES ON BRIDGE IMPACT

EMERGENCY RAMP

TRAFFIC CALCULATION

Analysis, optimization and simulation

From huge avenues to details

Manage crisis scenarios

Design emergency exits to guarantee the quickest and safest evacuation of large buildings and events

Vehicles

EN 1317: RRS EUROPEAN STANDARD

Containment level

engineering

	Table 1 — V	ehicle impact f	est description	s
	Impact	Impact	Total	
Test	speed	angle	mass	Type of vehicle
	km/h	0	kg	
TB 11	100	20	900	Car
TB 21	80	8	1 300	Car
TB 22	80	15	1 300	Car
TB 31	80	20	1 500	Car
TB 32	110	20	1 500	Car
TB 41	70	8	10 000	Rigid HGV
TB 42	70	15	10 000	Rigid HGV
TB 51	70	20	13 000	Bus
TB 61	80	20	16 000	Rigid HGV
TB 71	65	20	30 000	Rigid HGV
TB 81	65	20	38 000	Articulated HGV

	Table 2 —	Containme	nt levels	
Conta	inment levels			Acceptance test
Low angle containment	T1			TB 21
	T2			TB 22
		T3		TB 41 and TB 21
Normal containment	N1			TB 31
	N2			TB 32 and TB 11
Higher containment		H1		TB 42 and TB 11
			L1	TB 42 and TB32 and TB 11
		H2		TB 51 and TB 11
			L2	TB 51 and TB32 and TB 11
		НЗ		TB 61 and TB 11
			L3	TB 61 and TB32 and TB 11
Very high containment		H4a H4b		TB 71 and TB 11 TB 81 and TB 11
			L4a L4b	TB 71 and TB32 and TB 1 TB 81 and TB32 and TB 1

Acceleration severity index

Table 3 — Impact severity levels				
Impact severity level Index values				
А	ASI ≤ 1,0			
В	ASI ≤ 1,4	and	THIV ≤ 33 km/h	
С	ASI ≤ 1,9			

Working Width (W) and Vehicle Intrusion (VI)

Classes	Levels of normalized working width (m)	Levels of normalized vehicle intrusion (m)
1	W _N ≤ 0,6	VI _N ≤ 0,6
2	W _N ≤ 0,8	VI _N ≤ 0,8
3	W _N ≤ 1,0	VI _N ≤ 1,0
4	W _N ≤ 1,3	VI _N ≤ 1,3
5	W _N ≤ 1,7	VI _N ≤ 1,7
6	W _N ≤ 2,1	VI _N ≤ 2,1
7	W _N ≤ 2,5	VI _N ≤ 2,5
8	W _N ≤ 3,5	VI _N ≤ 3,5
9	/	VI _N ≥ 3,5

NCHRP350

	Test		Impact Conditions	ns	
Test Level	Designation	Vehicle	Nominal Speed (km/h)	Nominal Angle e (deg)	
1	1-10	820C	50	20	
	1-11	2000P	50	25	
2	2-10	820C	70	20	
	2-11	2000P	70	25	
3	3-10	820C	100	20	
	3-11	2000P	100	25	
4	4-10	820C	100	20	
	4-11	2000P	100	25	
	4-12	8000S	80	15	
5	5-10	820C	100	20	
	5-11	2000P	100	25	
	5-12	36000V	80	15	
6	6-10	820C	100	20	
	6-11	2000P	100	25	
	6-1	36000T	80	15	

MASH

Test Lovel	Test Vahiala Designation and Type	Test Conditions		
IESI LEVEI		Speed mph (km/h)	Angle (deg.)	
1	1100C (Passenger Car)	31 (50.0)	25	
	2270P (Pickup Truck)	31 (50.0)	25	
2	1100C (Passenger Car)	44 (70.0)	25	
	2270P (Pickup Truck)	44 (70.0)	25	
3	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
4	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
	10000S (Single Unit Truck)	56 (90.0)	15	
5	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
	36000V (Tractor-Van Trailer)	50 (80.0)	15	
6	1100C (Passenger Car)	62 (100.0)	25	
	2270P (Pickup Truck)	62 (100.0)	25	
	36000T (Tractor-Tank Trailer)	50 (80.0)	15	

EN 12767: PASSIVE SAFETY OF SUPPORT STRUCTURES

Table 1 — Impact speedsSpeed class
km/hImpact speeds
km/h5035 and 507035 and 7010035 and 100

Table A.1 — Passive safety performance types

	Alternatives	Clause
Speed class	50, 70, 100	A.2
Energy absorption category	HE, LE or NE	A.3
Occupant safety class	A, B, C, D, E	A.4
Backfill type	S, X, R	5.2.1, Table 1
Collapse mode	SE, NS	A.5
Direction class	SD, BD, MD	A.6

Table A.3 — Table A.3 — Energy absorption categories

Speed class	50	70	100
Energy absorption category	Vehicle exit speed, ve km/h		
HE	$v_{e} = 0$	$0 \le v_{\rm e} \le 5$	$0 \le v_{\rm e} \le 50$
LE	$0 < v_{e} \le 5$	$5 < v_{\rm e} \le 30$	$50 < v_{\rm e} \le 70$
NE	$5 < v_{e} \le 50$	$30 < v_{e} \le 70$	$70 < v_{e} \le 100$

Table A.4 — Impact severity indexes

Energy absorption	Occupant safety class	Speeds			
categories		Low s	peed test	High :	speed test
		(35	km/h)	(50 km/h ,	70 km/h , 100
				k	m/h)
		Maxim	um values	Maxim	um values
		ASI	THIV	ASI	THIV
			(in km/h)		(in km/h)
HE / LE / NE	E	1	27	1,4	44
HE / LE / NE	D	1	27	1,2	33
HE / LE / NE	С	1	27	1	27
HE / LE / NE	В	0,6	11	0,6	11
NE	Α	No test	No test	No ASI	and THIV
		required	required	measu	rements ^a

PAS 68 / PAS 69: VEHICLE SECURITY BARRIER SYSTEMS

Test vehicle classification		Test classification kg	Test speed km/h	Impact angle
Car	M1	1500	16, 32, 48, 64, 80, 96, 112	0° to 90° in 5 intervals
4x4 pick-up (crew cab design)	NIG	2500	16, 32, 48, 64, 80, 96, 112	0° to 90° in 5 intervals
Day cab vehicles	N1 flat bed (RWD)	3500	16, 32, 48, 64, 80, 96	0° to 90° in 5 intervals
	N2 2-axle rigid	7500	16, 32, 48, 64	0° to 90° in 5 intervals
	N3 2-axle rigid	7500	16, 32, 48, 64, 80	0° to 90° in 5 intervals
	N3 4-axe rigid	30000	16, 32, 48, 64, 80	0° to 90° in 5 intervals

ASTM (US) : VEHICLE SECURITY BARRIER SYSTEMS

Type of test vehicle (Kg)	Condition Designation	Nominal minimum test velocity (Km/h)	Kinetic Energy (KJ)
Small passenger car (C) 1100	C40	65	180
	C50	80	270
	C60	100	420
Pick Up Truck (P) 2300	PU40	65	380
	PU50	80	570
	PU60	100	890
Medium-Duty Truck (M) 6800	M3U	50	660
	M40	65	1110
	M10	80	1680
Heavy Goods Vehicle (H) 29500	H30	50	2850
	H40	65	4810
	H50	80	7280

Class

TDB0

TDB1

TDB2

TDB3 TDB4

TDB5

TDB6

EN 12899-1: ROAD SIGNS MECHANICAL RESISTANCE

Table 11 — Maximum temporary deflection – Bending

Bending mm·m

No performance determined

2

5

25

50 100

Wind pressure WL0 Aucune performance déterminée WL1 0.40 WL2 0,60 WL3 0,80 WL4 0,90 WL5 1.00 WL6 1,20 WL7 1,40 WI 8 1,50 WL9 1,60

Classe

Class	Torsion degree⋅m ⁻¹
TDT0	No performance determined
TDT1	0,02
TDT2	0,06
TDT3	0,11
TDT4	0,29
TDT5	0,57
TDT6	1,15

EN 12966: VARIABLE MESSAGE SIGNS

Table 13 — Impact Test

Impact tests shall be conducted on horizontally mounted test module front panel using a steel ball of 50 mm diameter with a mass of 0.51 kg dropped from a height h (1.3 m) to produce an impact energy of 6.5 Nm.

The test module shall be conditioned at a temperature of 20 °C (± 2 °C) and then be subject to three single impacts, at the weakest point on the front panel of the test module, this shall be determined by the Test-House in consultation with the manufacturer.

The test module shall be cooled to a temperature of -5 °C (±2 °C), which shall be maintained for three hours. Whilst the test module is at this temperature it shall be subjected to three single impacts at the weakest point on the front panel of the test module, this shall be determined by the Test-House in consultation with the manufacturer.

After the test the test module front panel or parts of it shall show no damage other then small indentations in the front surface; it shall exhibit no cracking. The test module shall continue to meet all the requirements of the standard.

Reference and check-poi

	spectrum will be defined as the arithmetic mean of ASD (Acceleration Spectrum Density) values of signals measured at the check points.	
Frequency range:	10 Hz to 200 Hz.	
ASD levels:	0.013 g²/Hz (10 Hz to 50 Hz).	
	0.013 g²/Hz (50 Hz to 200 Hz with a negative slope 3 dB/octave).	
	Overall RMS acceleration 1.2 g.	
Duration of conditioning:	90 min in each of 3 axes.	
Reproducibility:	Low.	
Initial measurements:	Visual inspection and Function test.	
Functioning during conditioning:	No.	
Final measurements:	Visual inspection and Function test.	

Brochure GDTech - www.gdtech.eu This document is the property of Group GDTech It can not be communicated to third parties or reproduced without written authorization (law of March 11, 1957)

vibrating table; in the case of large test module it

shall be a virtual point, where the reference signal

GDTECH engineering

REFERENCE STANDARDS

48

GDTECH engineering

ROAD RESTRAINT SYSTEMS, SAFE POLES, ANTI-INTRUSION, INDUSTRIAL SAFETY PROTECTION & TRAFFIC SIMULATIONS

CONTACT US :

Avenue de l'Expansion, 7 B-4432 ALLEUR Technopôle Transalley 180 rue Joseph-Louis Lagrange F-59300 FAMARS

Site Aéropolis F-64510 BORDES

Version : 04/2020

www.gdtech.eu