

GDTECH engineering

ROAD RESTRAINT SYSTEMS, POLES, ANTI-INTRUSION, INDUSTRIAL SAFETY PROTECTION & TRAFFIC SIMULATIONS

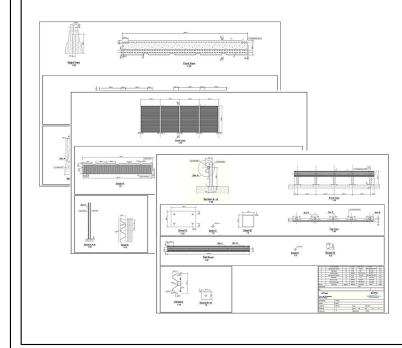
CONTACT US : +32 4 367 87 11 - www.gdtech.eu - info@gdtech.eu

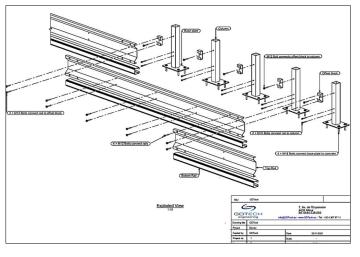
GENERAL PRESENTATION

GDTECH

SOFTWARE & HARDWARE Cluster #5 Cluster #1 768 Cores Altair HyperWorks 128 Cores 6144 GB Ram 256 GB Ram Intel Xeon Silver 4314 Intel Xeon E5-2670 @2,60Hz LS-DYNA Cluster #2 Cluster #4 128 Cores 512 Cores 512 GB Ram 4096 GB Ram Cluster #3 Intel Xeon E5-2640 @2,60Hz Amd Epyc 2019 160 Cores 35 SOLIDWORKS 768 GB Ram Intel Xeon Silver 4114 @2,20Hz

afao afao 2000 ENASJISO9100 2 Qualité Arioa definication


GENERAL


DRAWING SUPPORT

3D AESTHETIC RENDERING (IMAGES & VIDEOS)

2D DRAWINGS (CE, PRODUCTION, WEBSITE & EXPLODED VIEWS)

GENERAL

VEHICLES ACCORDING TO INTERNATIONAL STANDARDS

EU standards (EN1317, EN12767, EN16303 validated models):

Caravan [2050kg] Van

[2150kg]

Brochure GDTech - www.gdtech.eu This document is the property of Group GDTech It can not be communicated to third parties or reproduced without written authorization (law of March 11, 1957)

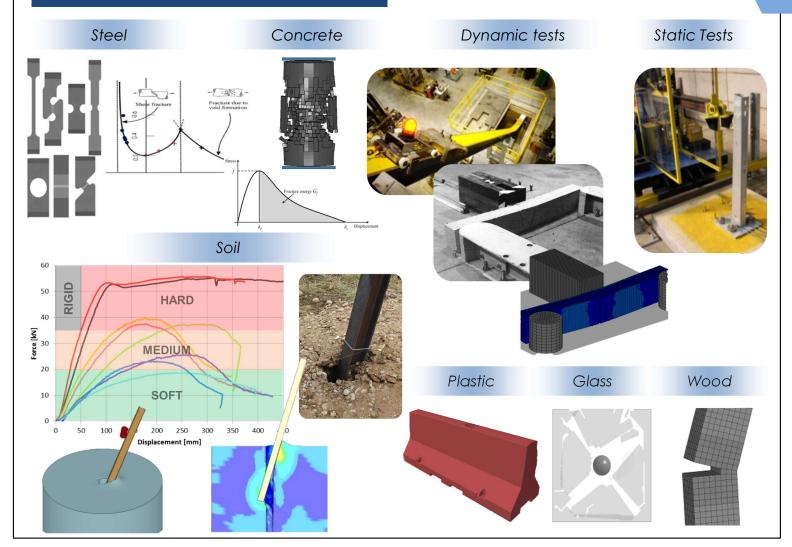
44 Tons

60 Tons

Mixer truck

Explorer

[2250Kg]


afaq ISO 9001 Qualité

Dummies

ADVANCED MODELS AND LAB TESTS

GDTECH

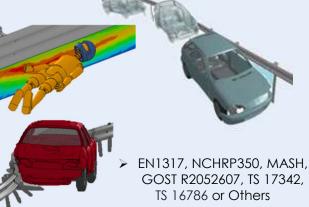
engineering

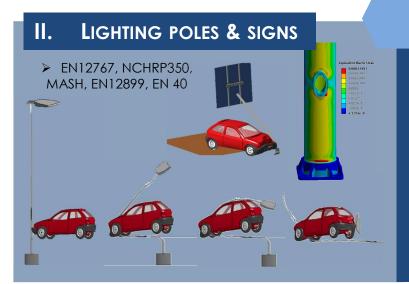
GENERAL

DETAILED REPORTS

Simulation reports

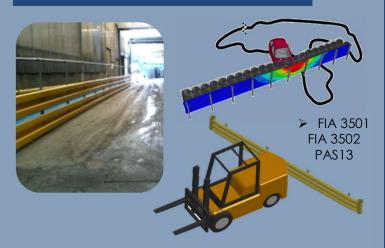
3D Viewer of animated results

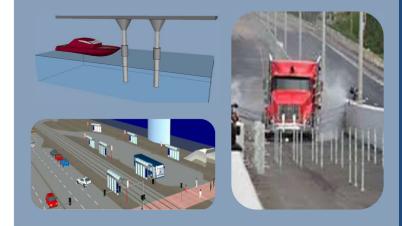

Von Mises Stress - Plastic Strain - Displacement ...


GDTECH

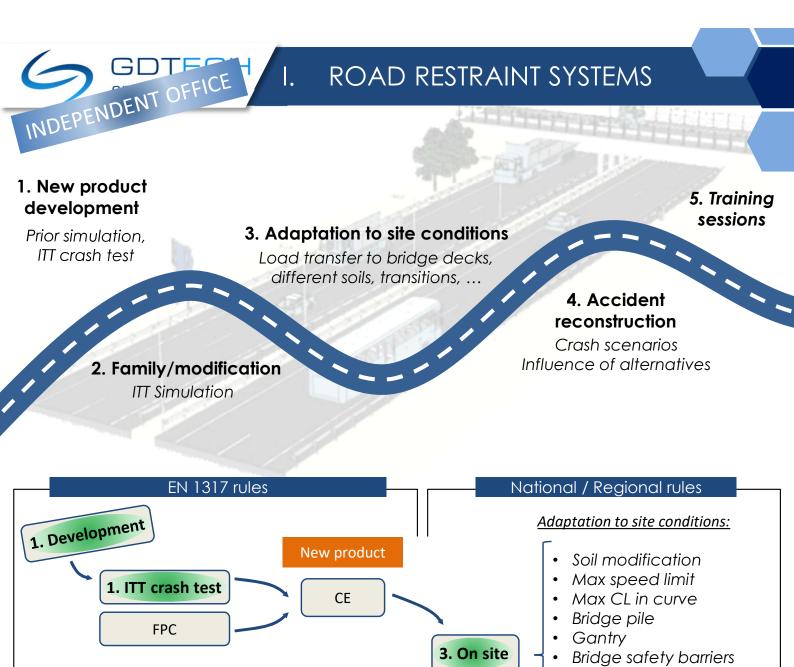
SUMMARY

Ι.


engineering



IV. **INDUSTRIAL PROTECTIONS**



VI. **OTHERS**

Modified product

CE

TransitionsCurve influence

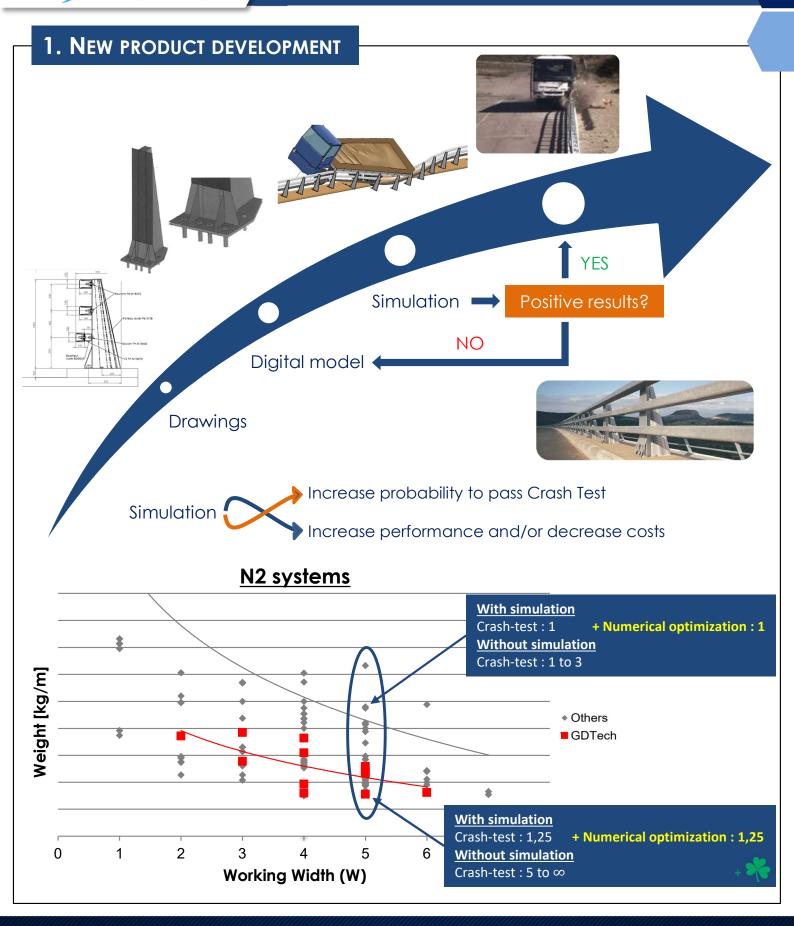
- Motorcyclist protection
- Concrete safety barriers
- Concrete safety ballers

• ...

Insurance / Court

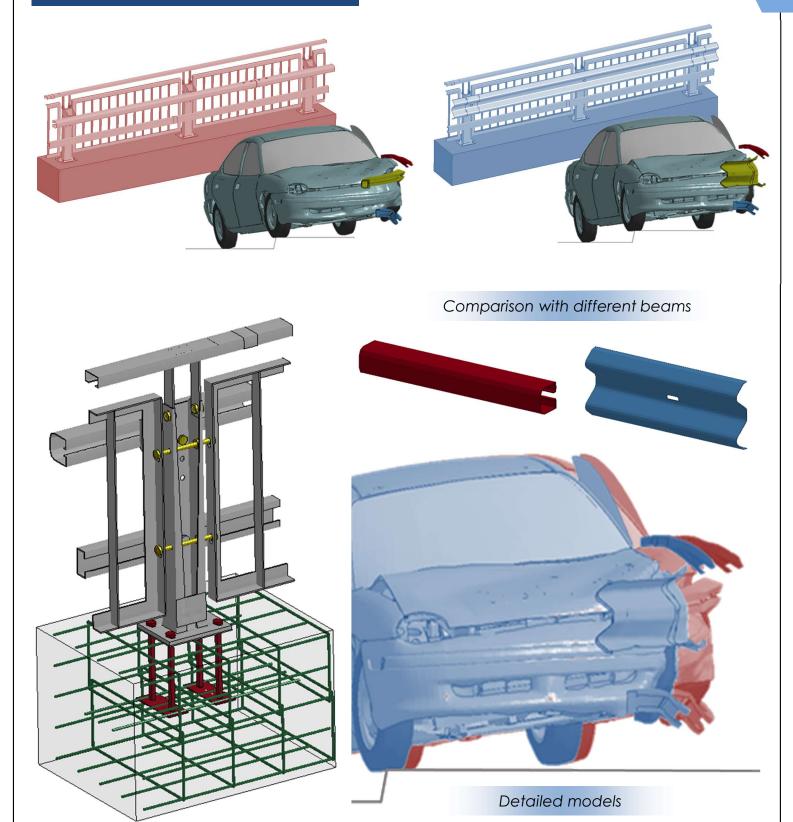
collaborated with many customers worldwide using EN1317, EN12767, TS17342, TS16786, NCHRP350, MASH, PAS68, ASTM F2656, ISO22343, EAD340059, EAD340089 and other standards. GDTech has delegates representing Belgium and France in TC226/WG1 and TC226/WG10 writing EN1317 and EN12767 respectively. GDTech is participating at the elaboration of the reference European document about how to simulate correctly EN1317 crashes of vehicles against road restraint systems (TG5) such as EN16303 for EU or NCHRP179 for US. GDTech is member of the TRB committe AKD20 concerning US standards. GDTech is member of different associations being: ERF (European Road Federation), Smart Transportation Alliance (STA) and IntOroads.

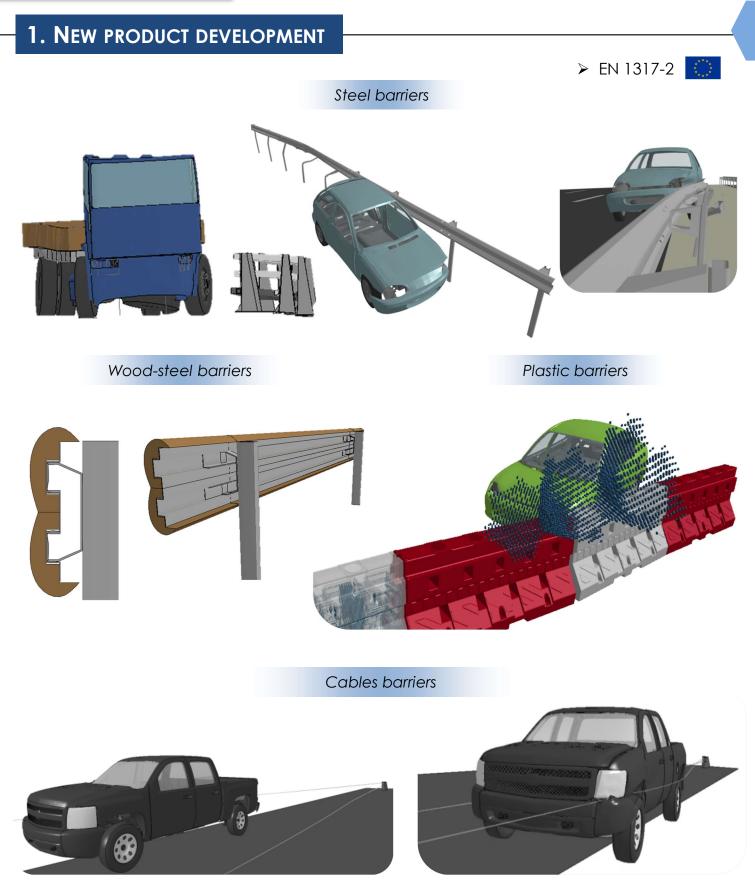
About us


GDTech is an independent company of >200 people with a core business being Finite Element Analyses of structures in the Aeronautic, Defense and Crash applications. Concerning roadside safety equipment analyses, GDTech has an experience of more than 20 years and has

Product CE

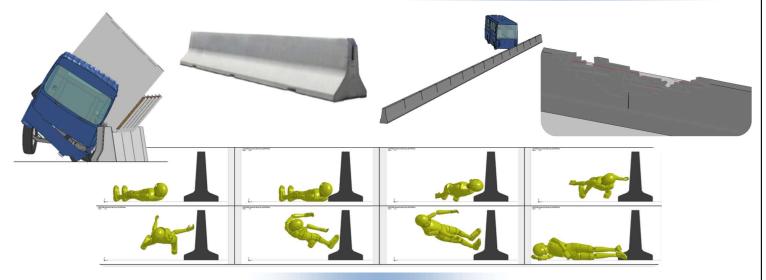
2. ITT simulation





1. NEW PRODUCT DEVELOPMENT

1. NEW PRODUCT DEVELOPMENT


GDTECH

engineering

Prefabricated concrete barriers

.

Cast in place / in site concrete barriers

Temporary barriers

End terminals

> CEN/TS 1317-7

1. NEW PRODUCT DEVELOPMENT

|.

Motorcyclist protection

≻ TS 17342 🚫

1. NEW PRODUCT DEVELOPMENT

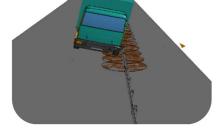
.

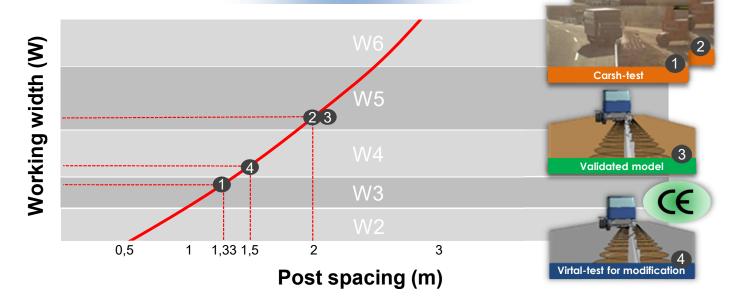
2. FAMILY/MODIFICATION

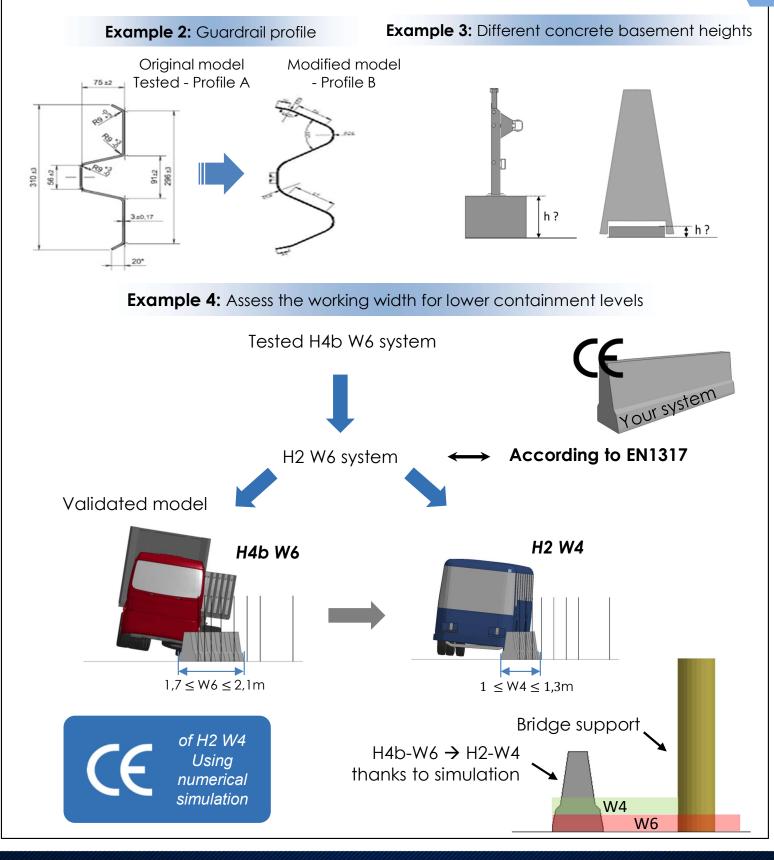
engineering

GDTECH

Simulation of "modification" should rely on validated models (EN16303)


Category	Change	Measure	C-T	V-T	Check
А	Slight	Normalized dynamic	0.8	0.76	0,04 < 0.18
В	Moderate	deflection [m]			
С	Significant	Normalized working width [m]	0.9	0.86	0,04 < 0.18

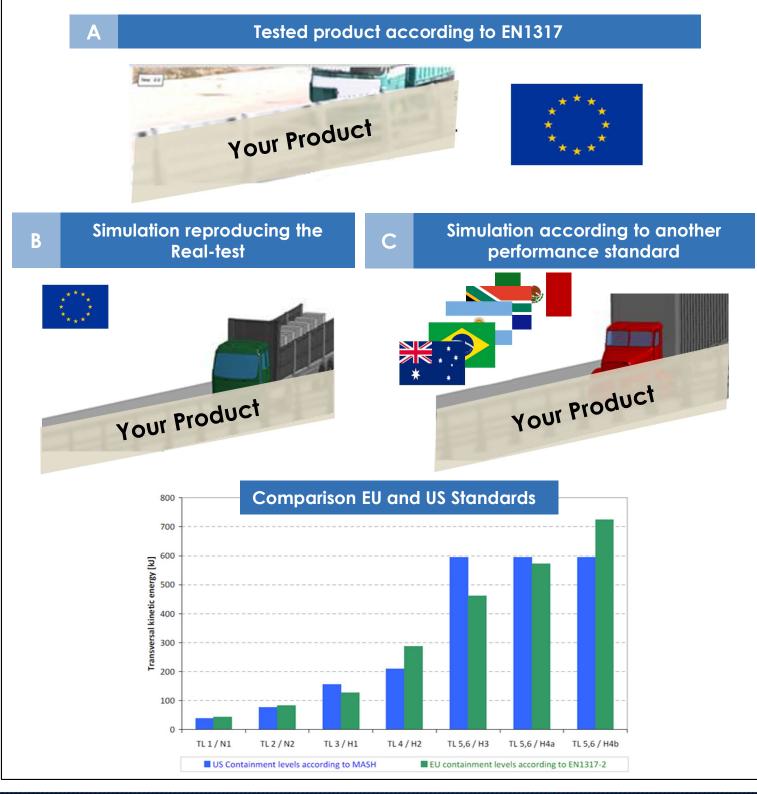




Example 1: Family of products

GDTECH engineering I. ROAD RESTRAINT SYSTEMS 2. FAMILY/MODIFICATION

Brochure GDTech - www.gdtech.eu This document is the property of Group GDTech It can not be communicated to third parties or reproduced without written authorization (law of March 11, 1957) afaq So 9001 Qualité Arron autrication Annon cettrication

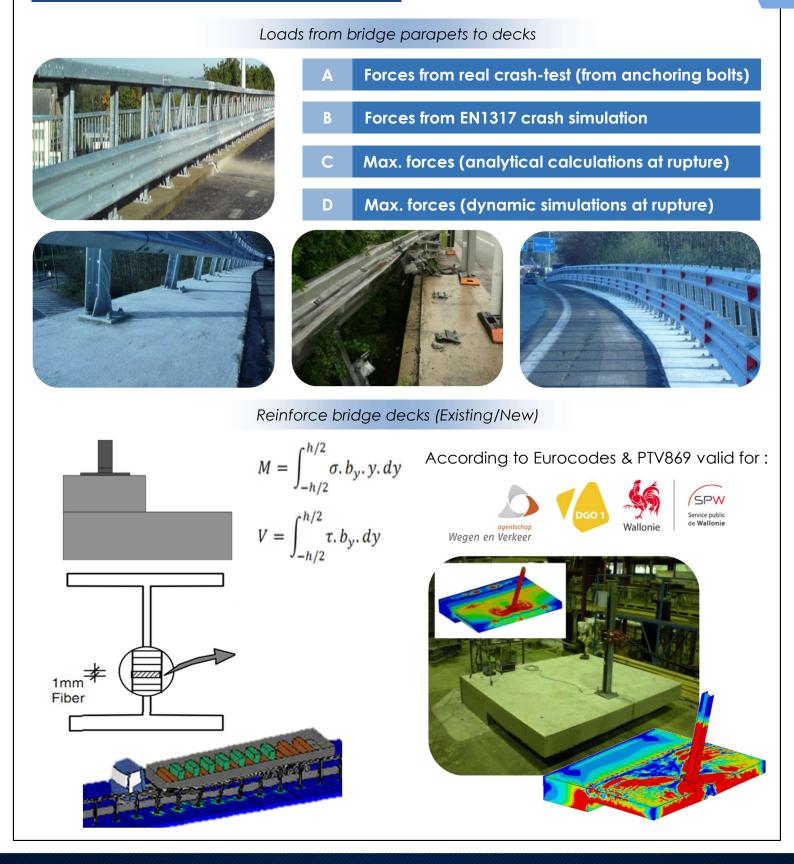

2. FAMILY/MODIFICATION

engineering

GDTECH

.

Simulation for assessing performance of a tested product according to a different international standard (EN1317, NCHRP 350, MASH, GOST, ...)

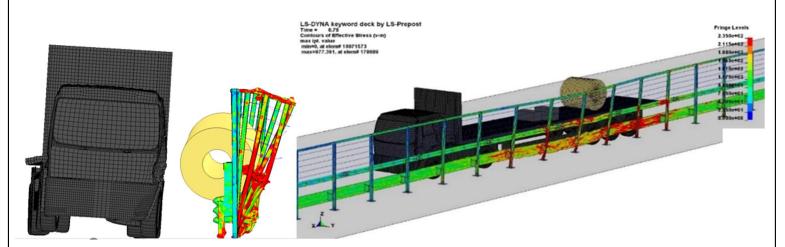


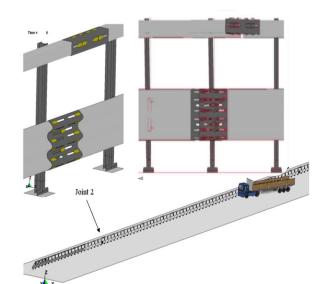
3. ADAPTATION TO SITE CONDITIONS

|.

GDTECH

engineering

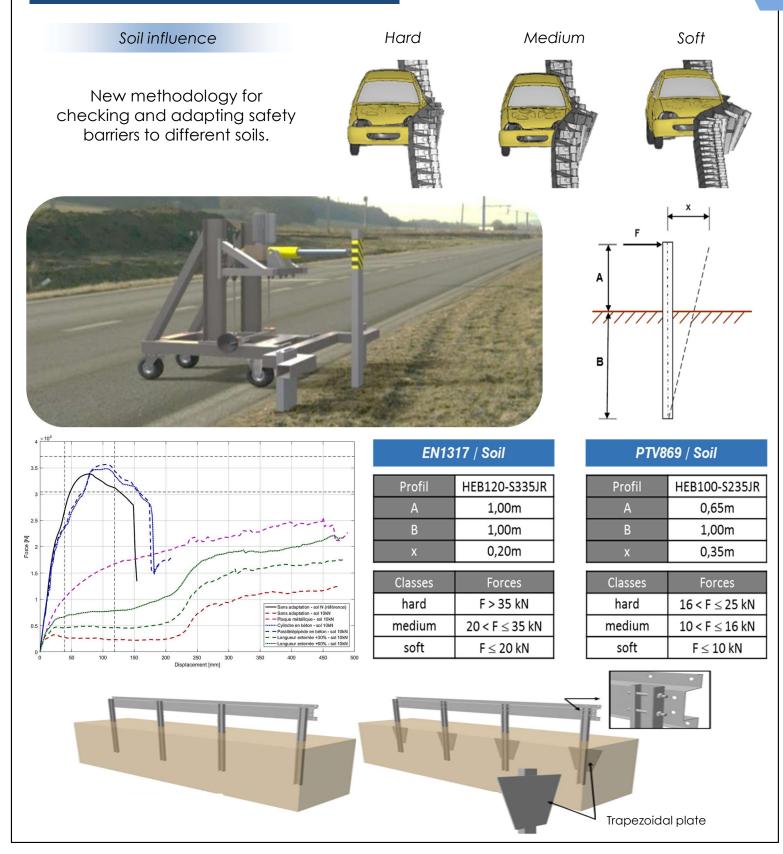



3. ADAPTATION TO SITE CONDITIONS

.

Falling load – Acoustical walls – Anti-suicide walls – Pedstrian protection

Steps & expansion joints



3. ADAPTATION TO SITE CONDITIONS

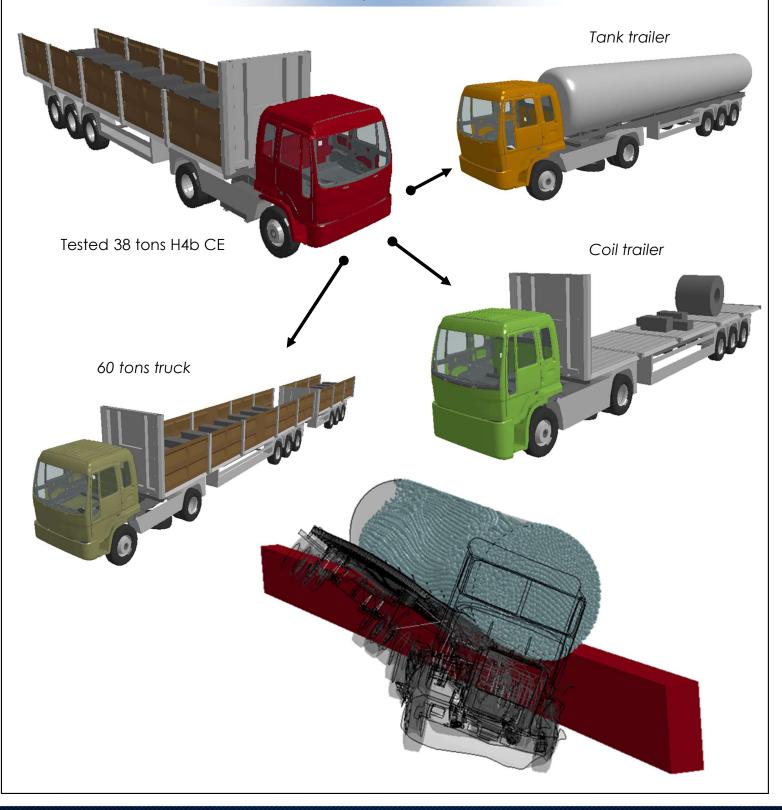
engineering

GDTECH

engineering

.

3. ADAPTATION TO SITE CONDITIONS ➤ CEN/TS 1317-10 Transition between systems Barrier 1 Transition Barrier 2 > Simulation reports valid for NF/BENOR certification. > Possibility for GDTech to review customer's simulation. BENOR Impact Point GOOD



3. ADAPTATION TO SITE CONDITIONS

|.

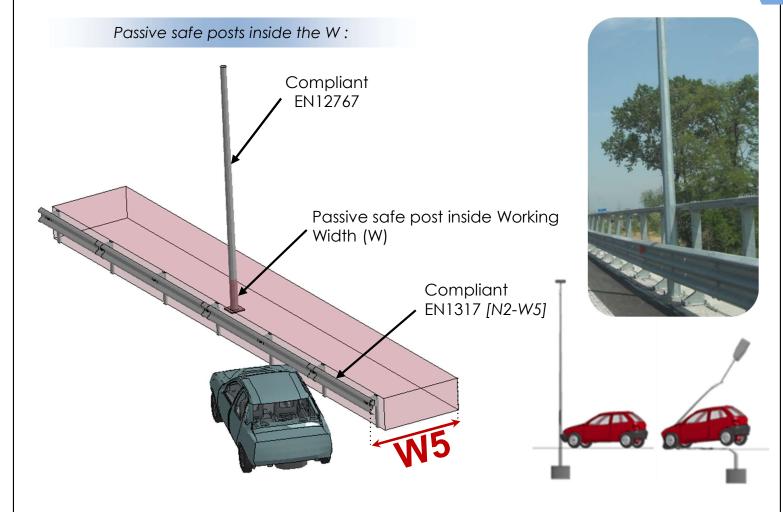
Vehicle mass/shape increased/modified

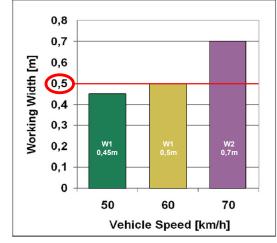
3. ADAPTATION TO SITE CONDITIONS

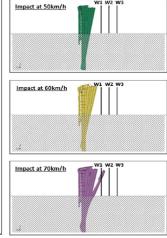
.

GDTECH

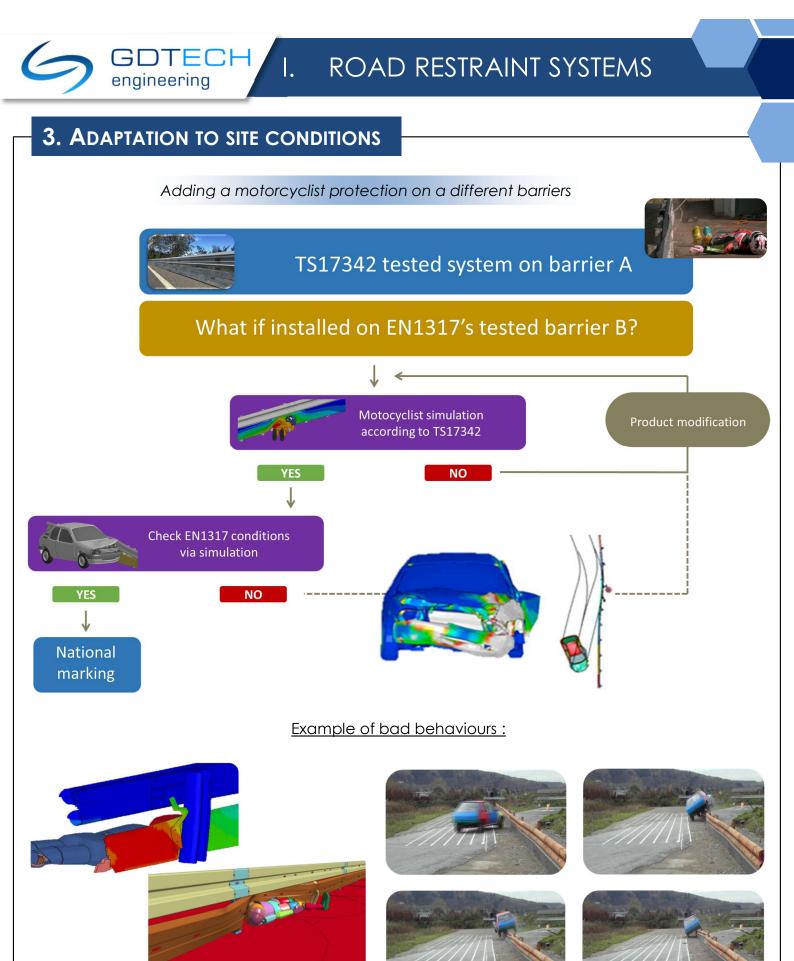
engineering






3. ADAPTATION TO SITE CONDITIONS

|.


Reduce speed to get W1 when only N2 W2 are available :

Brochure GDTech - www.gdtech.eu This document is the property of Group GDTech It can not be communicated to third parties or reproduced without written authorization (law of March 11, 1957) Aronautique Arionautique

4. ACCIDENT RECONSTRUCTION

.

5. TRAINING SESSIONS

GDTECH

engineering

Customized program in collaboration with local players

Workshop on vehicle restraint systems (VRS)

.

- International Standards and focus on European ones and updates.
- From perspective to performance standards: national examples.
- Performance standard for safer and more economical products:
 - Longitudinal barriers
 - Crashworthy terminals
 - Crash cushions
 - Motorcyclists and VRS
 - Energy absorbing poles
- Answers to specific situations:
 - Safety barriers in curves
 - Transitions
 - Soil influence & cliffs
 - Bridge safety barriers
 - Special protection zones
- National regulations on requirements not covered by EN 1317.
- Installation and repair regulations: national examples.

Workshop on local problematics on VRS

To be discussed.

=

Workshop on work zones safety

- Lateral protection regulations : national examples.
- Truck mounted attenuators & truck lateral protection.
- Traffic management for work zones.

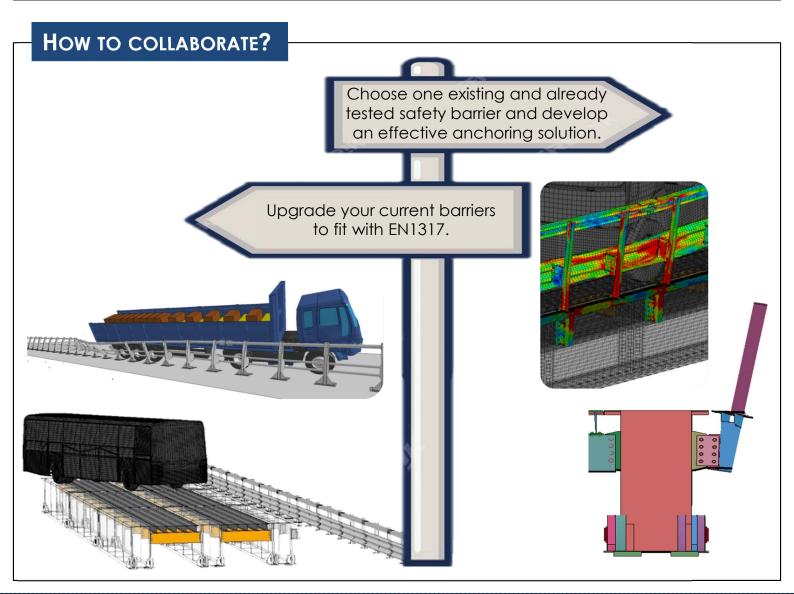
Workshop on traffic management & accidents

- Traffic management.
- Accident reconstructions.

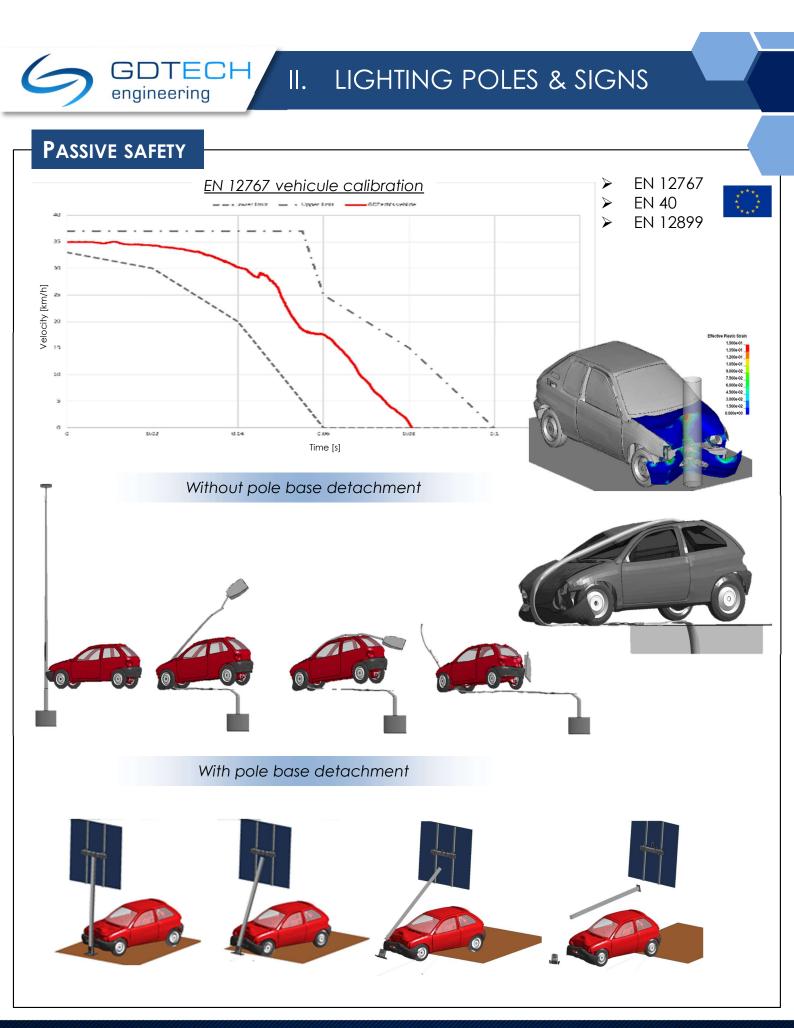
1/2 day

1/2 day

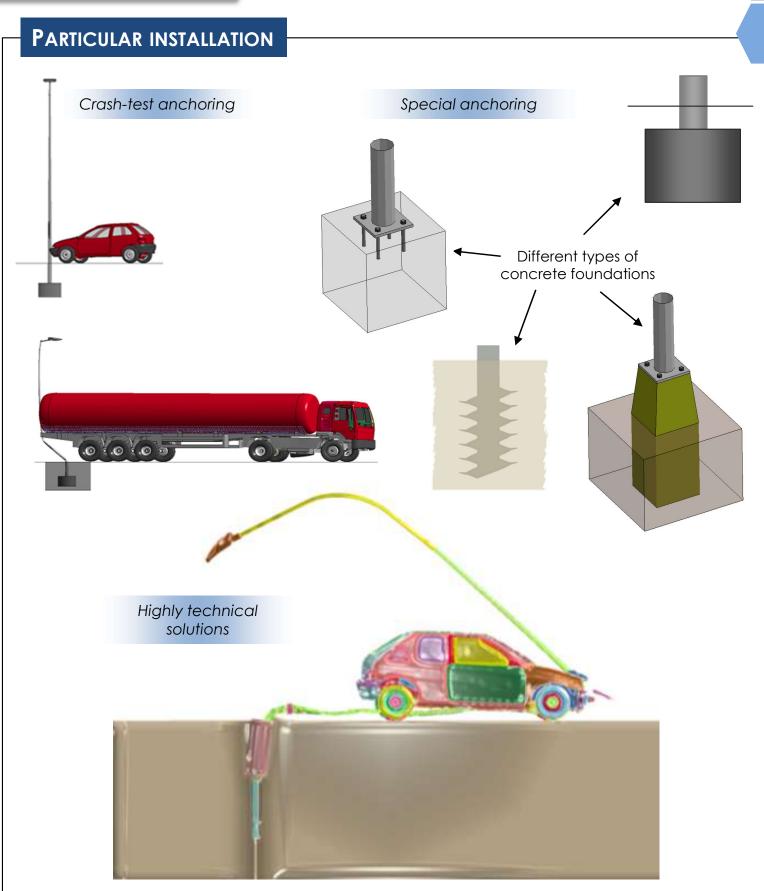
 $1/2 \, day$

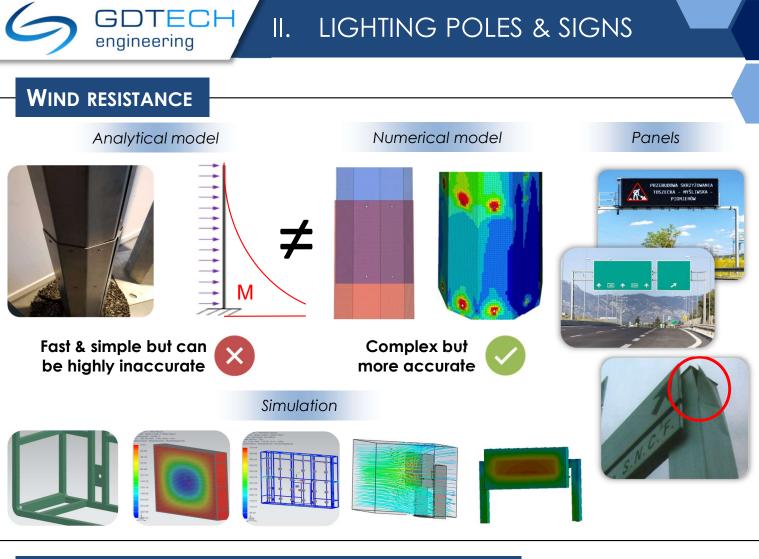


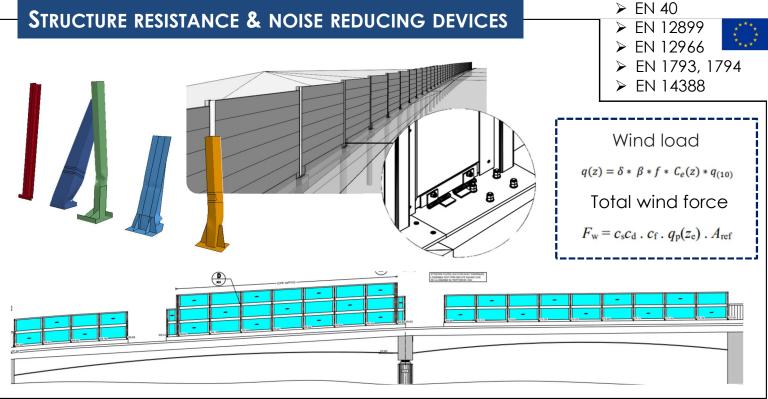
BRIDGE BARRIER UPGRADING


New EN1317

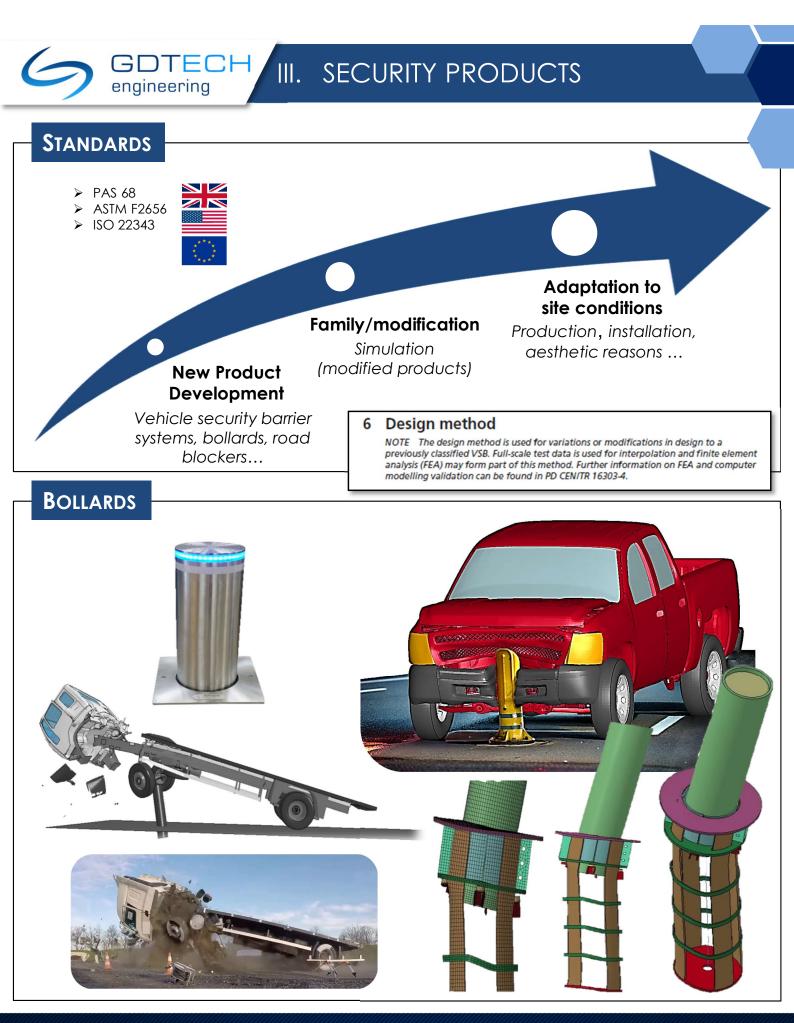
Mandatory to use CE crash-tested barriers on bridges.






II.

LIGHTING POLES & SIGNS



ROAD BLOCKERS

engineering

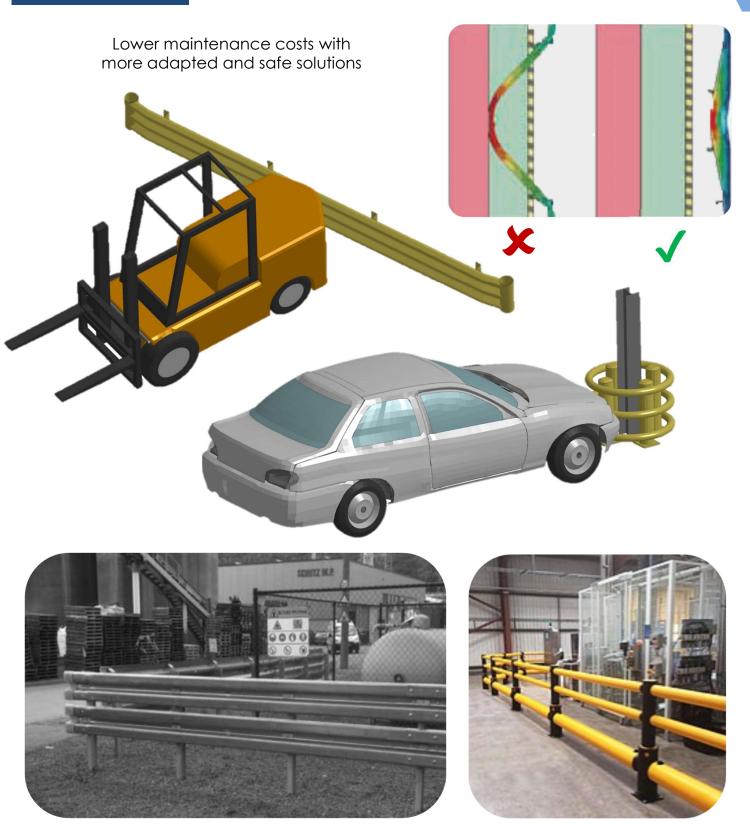
0

SECURITY BARRIERS

III. SECURITY PRODUCTS

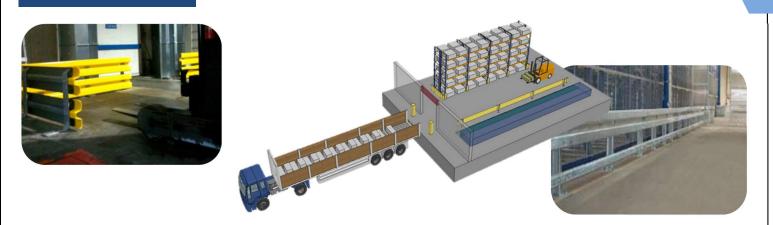
Mobile vehicle barriers (MVB)

Integrated products



IV. INDUSTRIAL PROTECTIONS

SAFETY BARRIERS



IV. INDUSTRIAL PROTECTIONS

INDUSTRIAL SITES

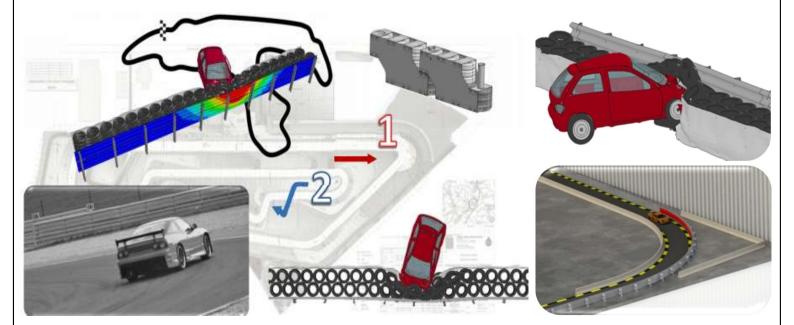
SERVICE STATIONS & PARKINGS

WALKWAY PROTECTIONS

IV. INDUSTRIAL PROTECTIONS

FALL PROTECTIONS

<section-header>


IV. INDUSTRIAL PROTECTIONS

CIRCUIT SAFETY BARRIERS

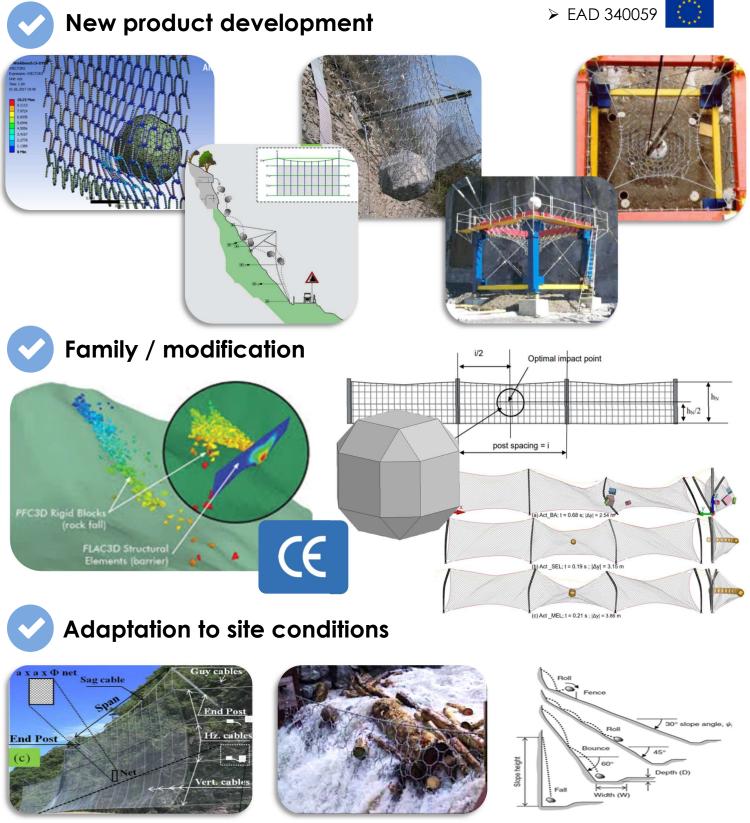
➢ FIA 3501-2017

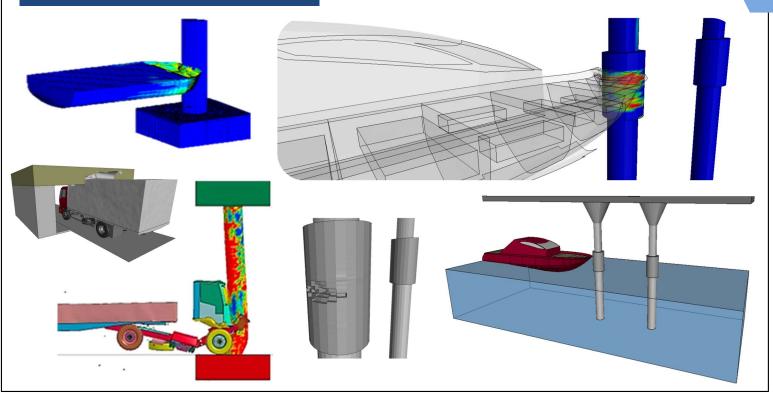
Analysis of trajectories, masses & speeds

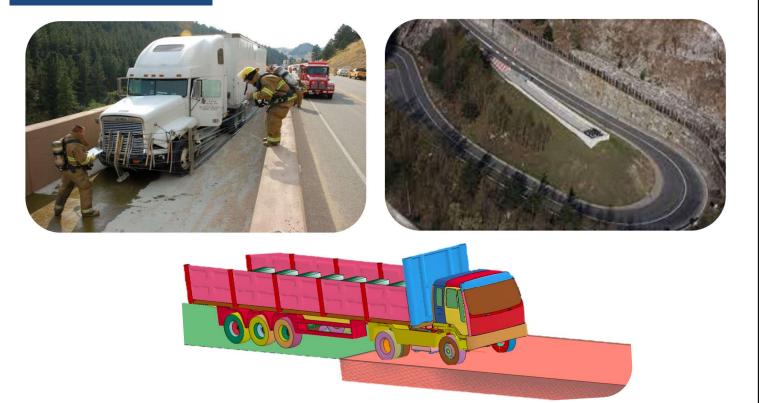
Protection design

DEBRIS FENCES

> FIA 3502-2018



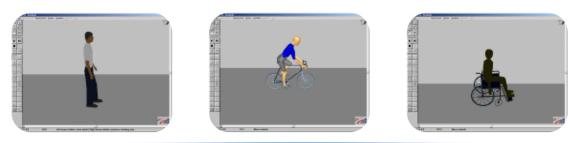


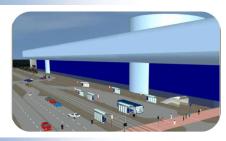


VI. OTHERS

VEHICLES ON BRIDGE IMPACT

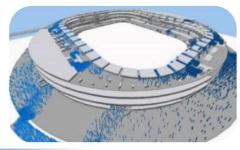
EMERGENCY RAMP




VI. OTHERS

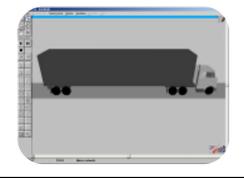
TRAFFIC SIMULATION

Analysis, optimization and simulation

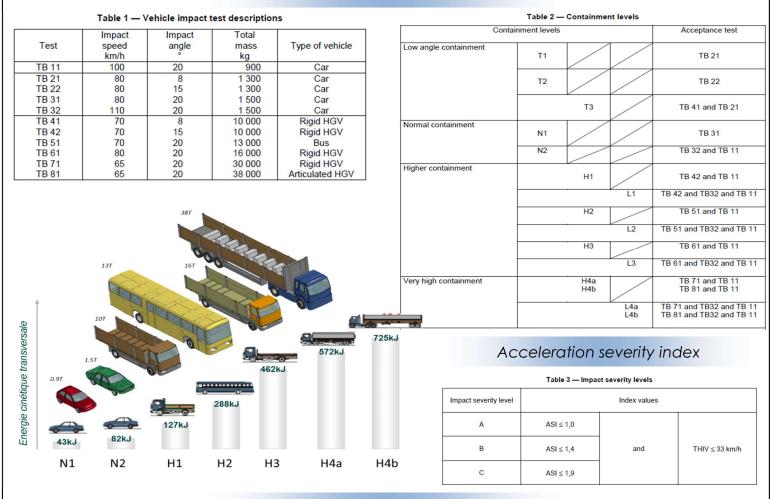

From huge avenues to details

Manage crisis scenarios

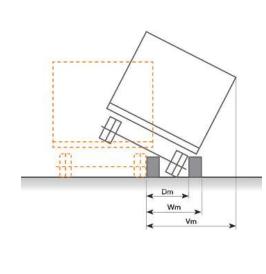
The design of emergency exits guarantees the fastest and safest evacuation of large buildings and events



Vehicles


REFERENCE STANDARDS

EN 1317: RRS EUROPEAN STANDARD


GDTECH

engineering

Containment level

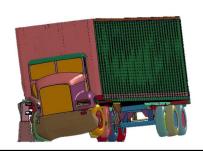
Working Width (W) and Vehicle Intrusion (VI)

Classes	Levels of normalized working width (m)	Levels of normalized vehicle intrusion (m)
1	W _N ≤ 0,6	$VI_N \le 0$,6
2	W _N ≤ 0,8	VI _N ≤ 0,8
3	W _N ≤ 1,0	VI _N ≤ 1,0
4	W _N ≤ 1,3	VI _N ≤ 1,3
5	$W_N \le 1,7$	$VI_N \le$ 1,7
6	W _N ≤ 2,1	VI _N ≤ 2,1
7	W _N ≤ 2,5	VI_N ≤ 2,5
8	W _N ≤ 3,5	VI_N ≤ 3,5
9	/	VI _N ≥ 3,5

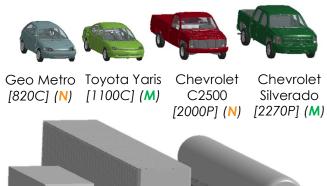
REFERENCE STANDARDS

Containment level

MASH (NCHRP350)


engineering

GDTECH


Teet	Vahiala	Impact	Impact con	ditions	
Test	Vehicle	severity	Speed mph	Angle	
Level	designation	[KJ]	(km/h)	(deg.)	
T1-10	1100C	18,9	31 (50.0)	25	
T1-11	2270P	39,1	31 (50.0)	25	
T2-10	1100C	37,1	44 (70.0)	25	
T2-11	2270P	76,6	44 (70.0)	25	
T3-10	1100C	75,8	62 (100.0)	25	
T3-11	2270P	156,4	62 (100.0)	25	
T4-10	1100C	75,8	62 (100.0)	25	
T4-11	2270P	156,4	62 (100.0)	25	
T4-12	10000S	209,3	56 (90.0)	15	
T5-10	1100C	75,8	62 (100.0)	25	
T5-11	2270P	156,4	62 (100.0)	25	
T5-12	36000V	595,4	50 (80.0)	15	
T6-10	1100C	75,8	62 (100.0)	25	
T6-11	2270P	156,4	62 (100.0)	25	
T6-12	36000T	595,4	50 (80.0)	15	

Example of recommended assessment summary page for individual crash tests

	Evaluation	on Criteria	Test Results	Assessment	
Structural Adequacy A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation, although controlled lateral deflection of the test article is acceptable.				Vehicle contained and smoothly redirected.	Pass
H. Oc Se	pant Risk cupant Impact Velocitie ction A5.2.2 for calcula following limits:		Longitudinal OIV = 33 ft/s (10 m/s)		
	Occupant Im	pact Velocity ft/s	(m/s)	Lateral OIV = 8 ft/s	Pass
	Component	Preferred	Maximum	(2.5 m/s)	
	Longitudinal and Lateral	30 (9)			
Vehicle Trajectory N. Vehicle trajectory behind the test article is acceptable.				Not applicable	Pass

AASHID	
Manual for Assessing Safety Hardware	NCCHERP Web-Ony Document 178 Proceduces for Verification and Validation of Computer Stimulations Used of Roadsaide Safety Applications
1988 7 3	Macrosoft on 1. Phys means the second second second term of the second second second term of the second second second Contrast A. Protection Contrast Second second second Contrast Second second second second Second Second Second Second Second Second Second Second Sec
	Contractor's Final Hapon't for MCHRP Project 20.34 Submitted March 2010 Automatic Supervision Relationst Program

Truck [8000S] (N) [10000S] (M) Van trailer [36000V] (N,M) Tank trailer [36000T] (N,M)

Teet	Vakiala	Impact Con	ditions		
Test	Vehicle	Speed mph	Angle		
Level	designation	(km/h)	(deg)		
1-10	820C	31 (50)	20		
1-11	2000P	31 (50)	25		
2-10	820C	44 (70)	20		
2-11	2000P	44 (70)	25		
3-10	820C	62 (100)	20		
3-11	2000P	62 (100)	25		
4-10	820C	62 (100)	20		
4-11	2000P	62 (100)	25		
4-12	8000S	50 (80)	15		
5-10	820C	62 (100)	20		
5-11	2000P	62 (100)	25		
5-12	36000V	50 (80)	15		
6-10	820C	62 (100)	20		
6-11	2000P	62 (100)	25		
6-12	36000T	50 (80)	15		
LENGTH OF TEST SECTON REFERENCE POST/SPUCE H H H H H H H H H H TIST 9.(DED) 10 25 11 25 12 15 Dio Anchor					

TEST 10,11, AND 12

END TERMINALS CEN/TS 1317-7

New draft for terminals : CEN/TC 226/WG1N575:2022

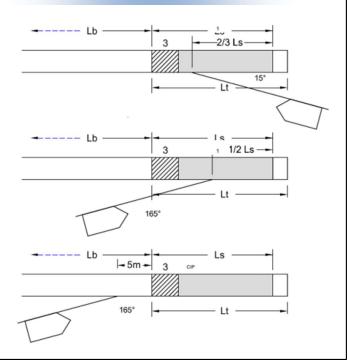
Restraint Category (T)	Direc Cate		Performance class (P)	Test					
T50	UT	A			TT2.1.50				
T80/3	UT	A	P1		TT2.1.80				
του/2	UTA	BDT	P2		TT2.1.80		TT4.2.80		
T80/2	UTD	вл	P2					TT5.1.80	
T80/1	UTA	BDT			TT2.1.80		TT4.2.80		
180/1	UTD	ועם						TT5.1.80	TT6.2.80
T80	UTA	BDT		TT1.2.80	TT2.1.80	TT3.2.80	TT4.2.80		
160	UTD	ועם						TT5.1.80	TT6.2.80
T100/1	UTA	BDT	P3	TT1.2.100	TT2.1.100		TT4.2.100		
1100/1	UTD	ועם	P5					TT5.1.100	
T100	UTA	BDT		TT1.2.100	TT2.1.100	TT3.2.100	TT4.2.100		
1100	UTD	ועם						TT5.1.100	TT6.2.100
T110/1	UTA	PDT	P4	TT1.3.110	TT2.1.100		TT4.3.110		
1110/1	UTD	BDT	۲4					TT5.1.100	
T110	UTA	BDT		TT1.3.110	TT2.1.100	TT3.3.110	TT4.3.110		
1110	UTD	ועם						TT5.1.100	TT6.3.110

UTA : Uni-direction terminal approach

UTD : Uni-direction terminal departure

BDT : Bi-directional terminal (All BDT's can be tested in both categories UTA and UTD)

Different types of teminals



Impact severity

Index values			
ASI ≤ 1,0	and	THIV \leq 44 km/h in Approach 1, 2 and 3 THIV \leq 33 km/h in Approach 4, 5 and 6	
ASI ≤ 1,4	and	THIV \leq 44 km/h in Approach 1, 2 and 3 THIV \leq 33 km/h in Approach 4, 5 and 6	
	ASI ≤ 1,4		

Example of different restraint level

Speed

Class

TS 16786 : Truck Mounted Attenuator

Peugeot 205 [900kg]

Mobile carrier (where applicable)					
Transmission Parking brake Steering Angle					
Neutral	On	0 ± 5°			

Condition of mobil carrier prior to test

Impacting Vehicle Specification

Mass kg	
Total mass	2 000 ± 75
Test inertial mass	2 000 ± 75
Maximum ballast ^a	200
Dimensions	
m Limit deviation (± 15%)	
Wheel track (front and rear)	1,6
Centre of mass location m ^b	
Longitudinal distance from front axle (CGX) \pm 10%	1,4
Lateral distance from vehicle centre line (CGY)	± 0,10
Height above ground of vehicle mass (CGZ) $\pm10\%$	0,65
Type of vehicle	Motor Vehicle
Number of axles ^c	1S+1
a Including measuring and recording equipment.	b

b The centre of mass of vehicles with two axles shall be determined in conformity with ISO 10392.

S: steering axle

Speed Class 50 Test matrix

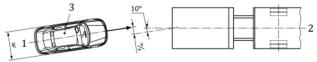
6 J		Impacting vehicle			
Speed Class	Test Designation	Total Test Mass kg	Impact Speed km/h	Approach angle and location of impact point, see Figure 1	Total mass of the whole system
50	T-TMA50-2	2 000	50	head-on, centre	10 000 kg, or maximum specified by the manufacturer if less than 10 000 kg, or minimum specified by the manufacturer if greater than 10 000 kg
	T-TMA50-4	2 000	50	nose ¼ offset, at 10°	Minimum specified by the manufacturer

Impact severity values

Impact severity index	Maximum index values
ASI A	≤ 1.0
ASI B	≤ 1.4
ASI C	≤ 1.9
THIV	44 km/h

Impacting vehicle Test Total mass of the whole system Total Approach angle Designation Impact Test and location of Speed impact point, see Figure 1 Mass km/h kg T-TMA80-1 900 80 head-on, centre Maximum specified by the

Speed Class 80 Test matrix


					manufacturer
80	T-TMA80-2	2 000	80	head-on, centre	10 000 kg or maximum specified by the manufacturer if less than 10 000 kg, or minimum specified by the manufacturer if greater than 10 000 kg
	T-TMA80-3 Additional Test	2 000	80	head-on, centre	Maximum specified by the manufacturer
	T-TMA80-4	2000	80	nose ¼ offset, at 10°	Minimum specified by the manufacturer

Speed Class 100 Test matrix

Speed Class			Impacti	ng vehicle			
	Test Designation	Total Test Mass kg	Impact Speed km/h	Approach angle and location of impact point, see Figure 1	Total mass of the whole system		
	T-TMA100-1	900	100	head-on, centre	Maximum specified by the manufacturer		
100	T-TMA100-2	2 000	100	head-on, centre	10 000 kg or maximum specified by the manufacturer if less than 10 000 kg, or minimum specified by the manufacturer if greater than 10 000 kg		
	T-TMA100-3 Additional Test	2 000	100	head-on, centre	Maximum specified by the manufacturer		
	T-TMA100-4	2 000	100	nose ¼ offset, at 10°	Minimum specified by the manufacturer		

a) Head-on Centre Impact (Approaches 1, 2, and 3)

b) Nose ¼ Offset, at 10° (Approach 4)

- Key 1 centre line of impacting vehicle
- 2 centre line of TMA

3 location of driver's side of vehicle

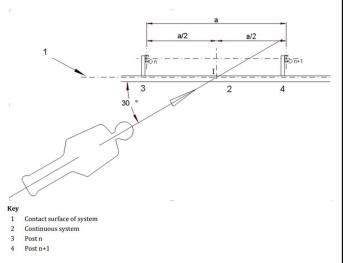
TS 17342 : Motorcycle road restraint system

Tests

Test	MPS type	Launch configuration (see 6.9)	Speed
			km/h
TM.1.60	CMPS and DMPS	Post-Centred (1)	60
TM.2.60	DMPS	Post offset (2)	60
TM.3.60	CMPS	Mid-span (3)	60
TM.1.70	CMPS and DMPS	Post-Centred (1)	70
TM.2.70	DMPS	Post offset (2)	70
TM.3.70	CMPS	Mid-span (3)	70

CMPS Continuous Motorcyclist Protection System

DMPS Discontinuous Motorcyclist Protection System


MPS Motorcyclist Protection System

Speed classes for DMPS

Class	Tests required	
D60	TM.1.60	TM.2.60
D70	TM.1.70	TM.2.70

Speed classes for CMPS

Class	Tests required		
C60	TM.1.60	TM.3.60	
C70	TM.1.70	TM.3.70	

Severity levels

Severity		Maximum admissible values					
level	Head				Neck		
		F _x N	Fz tension N	F _{z compression} N	MOC _x Nm	MOCy extension Nm	MOCy flex Nm
	HIC ₃₆				(°)		
I	650	Figure 7	Figure 8	Figure 9	134	42	190
II	1 000	Figure 10	Figure 11	Figure 12	134	57	190

EN 12767: PASSIVE SAFETY OF SUPPORT STRUCTURES

	impact speeds
Speed class km/h	Impact speeds km/h
50	35 and 50
70	35 and 70
100	35 and 100

Impact speeds

Passive safety performance types

	Alternatives	Clause
Speed class	50, 70, 100	A.2
Energy absorption category	HE, LE or NE	A.3
Occupant safety class	A, B, C, D, E	A.4
Backfill type	S, X, R	5.2.1, Table 1
Collapse mode	SE, NS	A.5
Direction class	SD, BD, MD	A.6

Energy absorption categories

Speed class	50	70	100		
Energy absorption category	Vehicle exit speed, ve				
		km/h			
HE	$v_{\rm e} = 0$	$0 \le v_{\rm e} \le 5$	$0 \le v_{\rm e} \le 50$		
LE	$0 < v_{e} \le 5$	$5 < v_{e} \le 30$	$50 < v_{\rm e} \le 70$		
NE	$5 < v_{e} \le 50$	$30 < v_{e} \le 70$	$70 < v_{e} \le 100$		

Impact severity indexes

Energy absorption	Occupant safety class		Spee	ds	
categories		Low sp	peed test	High :	speed test
		(35	km/h)	(50 km/h,	70 km/h , 100
				k	m/h)
		Maxim	um values	Maxim	um values
		ASI	THIV	ASI	THIV
			(in km/h)		(in km/h)
HE / LE / NE	Е	1	27	1,4	44
HE / LE / NE	D	1	27	1,2	33
HE / LE / NE	С	1	27	1	27
HE / LE / NE	В	0,6	11	0,6	11
NE	А	No test	No test	No ASI	and THIV
		required	required	measu	rements ^a

VEHICLE SECURITY BARRIER SYSTEMS

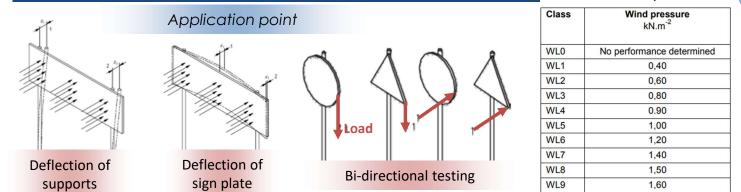
PAS 68 (PAS 69)

Test vehicle classification	Vehicle 1	ype	Weight (kg)	Speed (km/h)	Impact angle
Car	MI		1500	16, 32, 48, 64, 80, 96, 112	0° to 90° in 5 intervals
4x4 pick-up (crew cab design)	NIG		2500	16, 32, 48, 64, 80, 96, 112	0° to 90° in 5 intervals
	N1 flat bed (RWD)		3500	16, 32, 48, 64, 80, 96	0° to 90° in 5 intervals
	N2 2-axle rigid		7500	16, 32, 48, 64	0° to 90° in 5 intervals
Day cab vehicles	N3 2-axle rigid		7500	16, 32, 48, 64, 80	0° to 90° in 5 intervals
	N3 4-axe rigid		30000	16, 32, 48, 64, 80	0° to 90° in 5 intervals

Interpreting the PAS 68 classification code

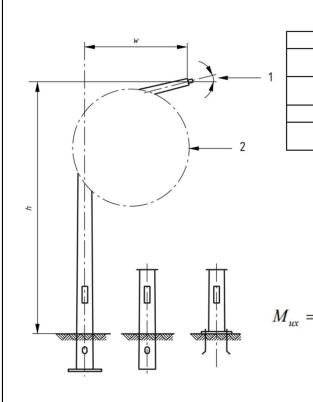
V/7500[N2]/64/90:1.7/0.0

Test Method / Test Weight [Vehicle Class] / Speed [kph] / Angle:Penetration / Dispersion


- ASTM	F 2656 -	07(US) —				
Type of test v	vehicle (kg)	Condition designation	Nominal minimun test velocity (km/h)	Kinetic energy (k	j)	
Cue all a secondaria		C40	65	179		
Small passenger car (C) 1100		C50	80	271		
		C60	100	424		
Pick up truck		PU40	65	375		
(P) 2300		PU50	80	568		
(1) 2000		PU60	100	887		
		M30	50	656		
Medium-duty truck (M) 6800		M40	65	1110	Penetrati	ion rating
		M50	80	1680		5
Heavy goods		H30	50	2850	Penetration	Dynamic
vehicle (H) 29500		H40	65	4810		penetration
	.000	H50	80	7280	designation	rating
E THE REAL			010-		P1	≤1m
		A REAL			P2	1,01m to 7m
					P3	7,01m to 30m
		>			P4	30m or greater

EN 12899-1: ROAD SIGNS MECHANICAL RESISTANCE

Table 8 — Wind pressure


Table 11 — Maximum temporary deflection - Bending

Class	Bending mm⋅m ⁻¹
TDB0	No performance determined
TDB1	2
TDB2	5
TDB3	10
TDB4	25
TDB5	50
TDB6	100

Table 12 — Maximum temporary deflection – Torsion

Class	Torsion degree m ⁻¹
TDT0	No performance determined
TDT1	0,02
TDT2	0,06
TDT3	0,11
TDT4	0,29
TDT5	0,57
TDT6	1,15

EN 40

Table 1 — Description of terrain category

Category	Description	
1	Rough open sea. Lakeshore with at least 5 km fetch upwind. Smooth flat country without obstacles.	
Ш	Farmland with boundary hedges, occasional small farm structures, houses or trees.	
Ш	Suburban or industrial areas and permanent forests	
IV	Urban areas in which at least 15 $\%$ of the surface is covered with buildings and their average height exceeds 15 m.	

Unreinforced openings in regular cross-sections

Bending moment of resistance, in Nm :

Torsional moment of resistance, in Nm :

$$=\frac{\mathbf{f}_{y}g\boldsymbol{\phi}_{3}Z_{pn}}{10^{3}\gamma_{m}}\qquad M_{uy}=\frac{\mathbf{f}_{y}g\boldsymbol{\phi}_{3}Z_{pn}}{10^{3}\gamma_{m}}$$

$$=\frac{f_y g \phi_3 Z_{py}}{10^3 \gamma_m}$$

$$=\frac{f_y g \phi_4 \phi_5 R^3 t}{10^3 \gamma_m L}$$

 T_{μ}

Photometric parameter

Colour

Luminance (L_a)

Beam width

Luminance ratio (LR)

Remarks

C2 is the more restrictive

(*) for specific situations

B7 has the widest beam

L3 has the highest luminance

These classes are for tunnel use

R3 has the highest luminance ratio

EN 12966: VARIABLE MESSAGE SIGNS

CLASS DESIGNATION

Environmental parameters				
Environmental parameters	Class designation	Remarks		
Temperature	T1, T2, T3			
Protection	P1, P2, P3	P3 is the most restrictive		

Photometric parameters

Class designation

B1, B2, B3, B4, B5, B6,

C1. C2

L3(*)

B7

L1, L2, L3,

R1, R2, R3

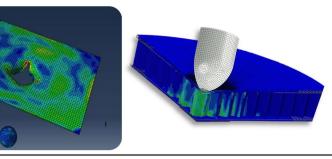
L1(T), L2(T), L3(T)

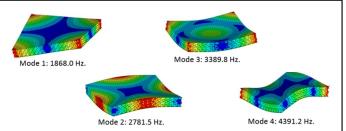
Class ambient temperature (°C) Minimum Maximum T1 -15 +60 T2 -25 +55 T3 -40 +40

Test modules containing exposed electrical equipment shall be protected :

Class	Ingress Protection Level
P1	IP44
P2	IP54
P3	IP56

MECHANICAL TEST METHODS


Table 13 — Impact Test


Impact tests shall be conducted on horizontally mounted test module front panel using a steel ball of 50 mm diameter with a mass of 0.51 kg dropped from a height h (1.3 m) to produce an impact energy of 6.5 Nm.

The test module shall be conditioned at a temperature of 20 °C (± 2 °C) and then be subject to three single impacts, at the weakest point on the front panel of the test module, this shall be determined by the Test-House in consultation with the manufacturer.

The test module shall be cooled to a temperature of -5 °C (± 2 °C), which shall be maintained for three hours. Whilst the test module is at this temperature it shall be subjected to three single impacts at the weakest point on the front panel of the test module, this shall be determined by the Test-House in consultation with the manufacturer.

After the test the test module front panel or parts of it shall show no damage other then small indentations in the front surface; it shall exhibit no cracking. The test module shall continue to meet all the requirements of the standard.

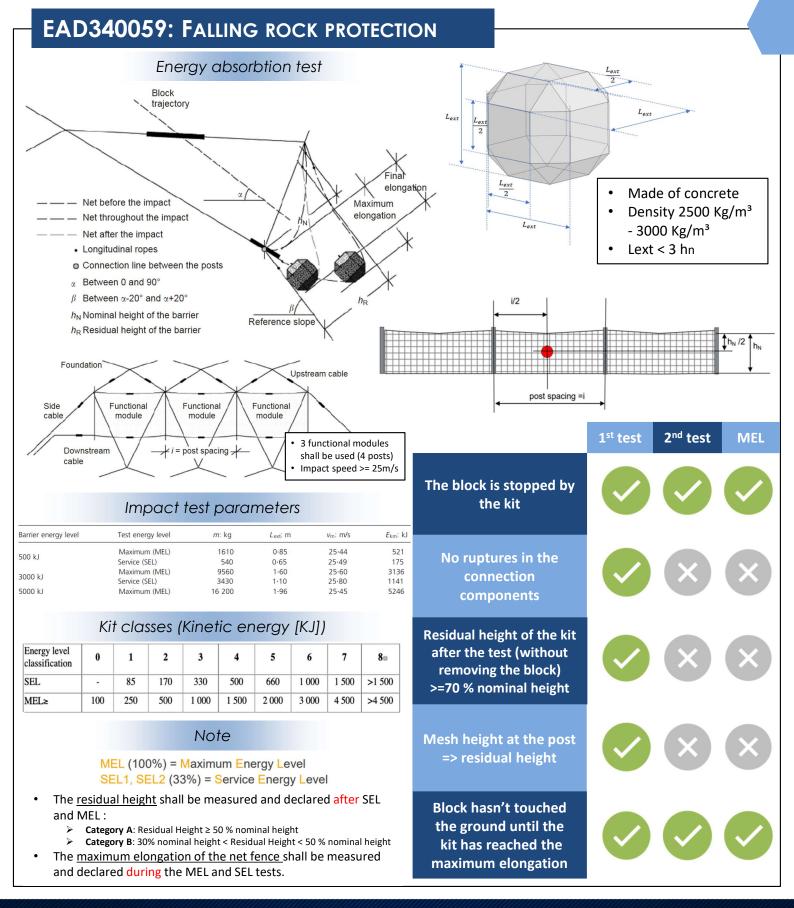


Table 14 — Vibration Test		
Mounting :	The test module shall be securely fixed to the vibrating table.	
Reference and check-points:	The reference point shall be chosen on the vibrating table; in the case of large test module it shall be a virtual point, where the reference signal spectrum will be defined as the arithmetic mean of ASD (Acceleration Spectrum Density) values of signals measured at the check points.	
Frequency range:	10 Hz to 200 Hz.	
ASD levels:	0.013 g²/Hz (10 Hz to 50 Hz).	
	0.013 g ² /Hz (50 Hz to 200 Hz with a negative slope 3 dB/octave).	
	Overall RMS acceleration 1.2 g.	
Duration of conditioning:	90 min in each of 3 axes.	
Reproducibility:	Low.	
Initial measurements:	Visual inspection and Function test.	
Functioning during conditioning:	No.	
Final measurements:	Visual inspection and Function test.	

GDTECH engineering

ROAD RESTRAINT SYSTEMS, SAFE POLES, ANTI-INTRUSION, INDUSTRIAL SAFETY PROTECTION & TRAFFIC SIMULATIONS

Version : 01/2022

www.gdtech.eu